
Methods for Characterizing and Comparing

Populations of Shock Wave Curves

Curtis B. Storlie, Michael L. Fugate, David M. Higdon, Aparna V. Huzurbazar

Elizabeth G. Francois, Douglas C. McHugh

Los Alamos National Laboratory

Date: June 3, 2012

Abstract

At Los Alamos National Laboratory, engineers conduct experiments to evaluate
how well detonators and high explosives work. The experimental unit, often called an
“onionskin”, is a hemisphere consisting of a detonator and a booster pellet surrounded
by high explosive material. When the detonator explodes a streak camera mounted
above the pole of the hemisphere records when the shock wave arrives at the surface.
The output from the camera is a two-dimensional image that is transformed into curve
that shows the arrival time as a function of polar angle. The statistical challenge
is to characterize the population of arrival time curves, and to compare the baseline
population of onionskins to a new population. The engineering goal is to manufacture a
new population of onionskins that generate arrival time curves with the same shape as
the baseline. We present two statistical approaches which test for differences in mean
curves, and provide simultaneous confidence bands for the difference: (i) a B-Spline
basis approach, (ii) a Bayesian hierarchical Gaussian process approach. In problems
that involve complex modeling with modest sample sizes, it is important to apply
multiple approaches with complementary strengths such as these to determine whether
all approaches provide similar results. The performances of the two approaches are
compared on several simulations that were constructed to mimic the actual onionskin
analysis. Finally an analysis of historical onionskin data is presented.

Keywords: Nonparametric Regression, B-Splines, Gaussian Process, Hierarchical Mod-
eling, Functional Data Analysis, Onionskin.

Running title: Onionskin Analysis

1 Introduction

At Los Alamos National Laboratory, engineers conduct experiments to evaluate how well

detonators and high explosives work. The experimental unit, often called an “onionskin”

(Dallman 1988, Hogan, Adams & Alrick, K., et. al. 1999, Hooks, Morris, Hill & Francois 2008)
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or “snowball” (Lundberg 1996), is a hemisphere consisting of a detonator and a booster pellet

surrounded by high explosive material with the center of the detonator and pellet located

directly under the pole at the equator of the hemisphere. When the detonator explodes a

streak camera mounted above the pole records when the shock wave arrives at the surface.

The output from the camera is a two-dimensional image that is transformed into a discretized

curve that shows the arrival time as a function of polar angle; an arrival time curves is often

referred to as onionskin curve.

Figure 1 shows a drawing of an onionskin mounted in a test device. Above the device is

a streak camera image recorded from an actual experiment. Also shown are nine onionskin

curves from historical tests performed at Los Alamos that, for purposes of this paper, are

considered the baseline data. Each discretized curve gives the arrival time in microseconds

(µs) of the shock wave on the surface of the onionskin as a function of polar angle. The

arrival times for different curves are observed at different angles. For reference, the sample

size and range of observed angles for each curve in Figure 1 is given in Table 1. Although

observed angles can range between ±90◦, engineers are only interested in the shape of the

curves between ±80◦. Consequently, the analysis below excludes data outside this range.

The problem to be addressed in this paper is the following. Approximately 30 onionskins,

manufactured using very high quality materials, will be tested for the purpose of establishing

a baseline. At various times in the future a new lot of onionskins will be manufactured using

materials that are supposed to be of similar properties and quality to the baseline materials.

A small sample of five to ten onionskins will be selected from the lot and tested. Before

accepting the lot, engineers will need to determine if the onionskin curves from the test

population are similar to those from the baseline population.

In this paper we develop and evaluate two approaches for testing the hypothesis that mean

curves from two populations are the same. In addition, these two methods are extended to

construct confidence bands for the mean curves and the difference in mean curves.
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Figure 1: The Onionskin Test Setup. (a) The chamber used to carry out the explosions to collect
onionskin curves (b) A 3D schematic of the onionskin unit sitting in the test device (c) A side view
of the onionskin in a test device prior to testing and an image from a streak camera. (d) Onionskin
data from historical tests.

(a) (b)

!

(c)

-80 -60 -40 -20 0 20 40 60 80

3.
07

3.
09

3.
11

3.
13

3.
15

3.
17

3.
19

Polar Angle (degrees)

A
rr

iv
al

 T
im

e 
(u

s)

Baseline Onionskin Curves

(d)

The first approach is derived from more classical and pragmatic ideas. The standard

approach in functional data analysis (FDA) (Ramsay & Silverman 2005) to compare two

independent samples of noisy curves is to view each curve i as a pi dimensional vector and

register the arrival times of each curve at a common set of p angles, for example with cubic

smoothing splines. In multivariate analysis, it is common to test for a mean difference with

Hotelling’s two-sample T 2 statistic (Christensen 2001). Of course, calculating T 2 requires
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Table 1: Baseline data summaries.

Observation ID Sample Size Min Angle Max Angle
15-2547 162 -83.0596 81.1393
15-2548 159 -83.8886 80.6162
15-2549 168 -86.6590 87.9967
15-2550 170 -83.8167 84.4541
15-2552 168 -83.3052 85.0207
15-2553 166 -82.8192 84.7257
15-2608 167 -85.9260 85.3868
15-2610 178 -88.5297 89.4079
15-2611 158 -82.9673 85.5605

the inversion of a p × p sample covariance matrix and generally p will be much larger than

the number of baseline and lot sample curves. Therefore some kind of dimension reduction

is usually required. Thus, the first approach models each curve as a linear combination of

B-spline basis functions and then uses the T 2 statistic to compare the coefficients of the

B-splines. The estimated coefficients also serve as a means to generate confidence bands

for the mean curve. The first approach uses ideas very similar to those proposed in Besse,

Cardot & Ferraty (1997) and Rice & Wu (2001), and its strength lies in its transparency

and ease of implementation.

The second approach models each curve as a realization from a Gaussian Process (GP)

(Stein 1999, Rasmussen & Williams 2006). This is similar in spirit to other Bayesian FDA

approaches in the literature which treat the mean curve with a flexible model. For example

Bigelow & Dunson (2007) model the basis coefficients in a multivariate adaptive spline model

as normally distributed. Botts & Daniels (2008) proposed a similar knot selection type

approach using B-splines. Morris & Carroll (2006) propose a wavelet-based random effects

model, placing a normal distribution on the random wavelet coefficients. Our approach is

the most similar to Behseta, Kass & Wallstrom (2005) who also avoid choosing an explicit

set of basis functions and/or knot selection through use of a hierarchical GP. However, our

model is different in a few important ways. We use a covariance function that allows an
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explicit orthogonalization of the intercept and the shape of the functions. It is particularly

critical in this problem that the overall level (i.e., intercept) of the mean curve be removed

from consideration as will be discussed further in Section 2. This covariance function also

lends itself well to a very efficient Gibbs sampling scheme which avoids the need to solve

a large matrix at all during the MCMC iterations. Further, we propose a novel use of the

Bayes Factor in a permutation test to compare two populations of curves, which is made

feasible due to the efficient MCMC algorithm. The strength of this GP approach lies in its

flexibility. Unlike the first approach it does not require the specification of a set of basis

functions. However, the price paid is less transparency and additional computation time.

Since the two approaches are complementary it is beneficial to apply them both to the

onionskin problem, and ensure that the conclusions that can be drawn are the same.

The rest of the article is organized as follows. In Sections 2 and 3 the B-spline and

GP approaches to comparing populations of curves and constructing confidence bands are

presented, respectively. In Section 4 results from a simulation study to compare performances

of the two approaches are presented. An actual analysis of onionskin populations is provided

in Section 5, and Section 6 concludes the paper.

2 B-spline Basis Model for Onionskin Curves

In this section, a linear model using B-spline basis functions is described to represent each

onionskin observation curve. For ease of presentation, only the model for the baseline ob-

servations is presented; the model for the test observations is identical. The i’th baseline

observation is represented as

yi,j = βi,0 +
5∑

k=1

βi,kBk(φi,j) + ei,j, i = 1, . . . ,m, j = 1, . . . , ni, (1)

where yi,j is the arrival time for the i’th observation at the j’th observed angle φi,j, Bk is

the k’th B-spline basis function (defined below), and
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ei,j
iid∼ N(0, σ2)

is the measurement error of the arrival time. The βi,k are unknown regression coefficients

that are estimated by ordinary least squares. Each observation has arrival times measured at

different angles φi,j, so the design matrix will be different for each observed curve. However,

the basis functions are the same for all of the curves (baseline or test sample).

The actual basis used here is the B-spline basis (pp. 160-163, Hastie & Tibshirani (1990)),

defined between ±80◦ with interior knot locations located at −40◦, 0◦, and 40◦, and boundary

knots at ±80◦, resulting in a total of seven basis functions (six for the “shape” and one

constant function for the intercept). However, the B-splines have also been adjusted by a

constant shift so that they are orthogonal to constant functions in the L2 function sense,

i.e., all Bk have been vertically shifted so that

∫ 80

−80
Bk(φ)dφ = 0.

Figure 2: Adjusted B-Spline basis functions,
excluding the intercept. The vertical lines
indicate the location of the interior knots.
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It is important to use splines that are orthog-

onal to the intercept in this case. Ramsay &

Silverman (2005), for example, recommend first

aligning functions vertically when attempting to

describe variability among functions. It is partic-

ularly critical to address this issue here, because

in this application it is perfectly acceptable for

the mean baseline coefficient α0 = E[βi,0] to be

different from the corresponding parameter in the

test population α∗0 = E[β∗i,0], but they must have

the same (or very similar) αs = E[βi,1, . . . , βi,6]
T .

That is, in this particular problem the curve populations must have similar shapes, irre-

spective of the overall level of the curves. The orthogonalization allows an unambiguous
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Figure 3: Two examples of fitting a linear model with adjusted B-Splines. (a) Of the nine baseline
curves the poorest fitting linear model is for test 15-2611 and (b) the best fitting model is for test
15-2550.
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separation of the “overall level” and “shape” effects.

Figure 2 shows a set of basis functions evaluated on a grid from −80◦ to 80◦ in one

degree increments. The constant shift adjustment is clearly seen in the plot. Figure 3 shows

the data and fitted curves for two observations from the baseline population. These two

examples the are “worst” and “best” fitting cases, respectively, as judged qualitatively from

the baseline data. Fitted models for the other baseline curves are similar. The regression

model with seven basis functions does an adequate job of fitting the onionskin data from the

baseline population.

2.1 Comparing Spline Regression Coefficients

Hotelling’s T 2 (Christensen 2001, Johnson & Wichern 2007) can be used to formally test if

the mean vector of the baseline coefficients αs = E[βi] is equal to the mean from a set of

new onionskin tests α∗s, where βi = [βi,1, . . . , βi,6]
T is the vector of shape coefficients for the

i’th baseline observation (and β∗i defined analogously). In this context Hotelling’s T 2 is
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T 2 =
(mm∗)

(m+m∗)
(ᾱs − ᾱ∗s)T S−1 (ᾱs − ᾱ∗s) (2)

where (i) m and m∗ are the baseline and test sample sizes, respectively, and (ii) ᾱs and ᾱ∗s

are the sample mean vectors of the estimated regression coefficients β̂i and β̂
∗
i for the baseline

and test data, respectively, and (iii) S−1 is the inverse of the pooled sample covariance matrix

of the estimated coefficients. With six basis functions (excluding the intercept) S is a 6× 6

matrix and the inverse will exist with high probability if the number of curves (baseline or

test) is at least seven (Okamoto 1973, Christensen 2001).

A subtle issue is that the βi are not actually observed, rather their estimates β̂i are.

However, from standard linear model theory E[β̂i] = E{E[β̂i | βi]} = E{βi} = αs so

that inference about αs can be carried out using the β̂i. If the β̂i, (and β̂
∗
i ) are multivariate

normal, and if αs = α∗s, then a multiple of T 2 will have a central F distribution (Christensen

2001). However, because the sample sizes are too small to adequately assess multivariate

normality, we also consider a permutation test (Mielke & Berry 2001) for H0 : αs = α∗s,

using the T 2 test statistic. This proceeds as follows.

Consider all
(
C=m+m∗

m

)
combinations c = 1, . . . , C of grouping the m + m∗ observations

into two sets of m and m∗ observations, respectively. For each combination of observations

c calculate T 2 as defined in (2), and denote this T 2(c). The permutation p-value is defined

as

p =
1

C

C∑
c=1

I{T 2(c) ≥ T 2}, (3)

where I(A) is the indicator of the set A (I(A) = 1 if A occurs and 0 otherwise), and T 2

is the value of the test statistic on the original sample. For computational efficiency, it is

common to take a smaller random sample of all C combinations and approximate the p-

value based on this subset of all possible combinations. Because computation of T 2(c) for a

given permutation is quite fast, p-values are calculated based on 10,000 randomly selected

permutations for the presented results.
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The permutation test is guaranteed to keep a specified type I error rate, under only the

assumption of exchangeability. That is, the null hypothesis is technically that the baseline

and test populations have the same distribution (i.e., not necessarily normal). However,

the T 2 statistic is explicitly formulated to test for changes in αs, so that this test will have

power to detect the difference of primary concern, namely a difference in mean “shape”. The

normal theory p-value approach is compared to the permutation test p-value approach (and

the GP approach described next in Section 3) in a simulation study provided in Section 4.

2.2 Simultaneous Confidence Bands for Mean Curves

A procedure for constructing 100 (1− γ) % confidence bands for the baseline mean “shape”

curve is described below. The procedure for the test data is entirely analogous. The con-

struction of confidence bands for the difference in mean shape curves is also discussed.

Let ᾱs,j and sj be the sample average and standard deviation, respectively, of the esti-

mates for the j’th coefficient for each observation, β̂1,j, . . . , β̂m,j. With six basis functions

100 (1− γ) % Bonferroni confidence intervals for the mean coefficients αs,j are

ᾱs,j ± t(1− (γ/6),m− 1) sj/
√
m, j = 1, . . . , 6 (4)

where t(r, ν) indicates the r’th quantile of a t distribution with ν degrees of freedom. Taken

together the intervals define a 100 (1 − γ) % Bonferroni confidence region (i.e., hypercube)

for the mean coefficient vector αs. Next, sample N coefficient vectors from the Bonferroni

region and generate N mean curves with adjusted B-spline basis functions defined over a

grid of 161 equally spaced angels from −80◦ to 80◦. Upper and lower confidence curves are

determined by finding the maximum and minimum of the N curves at each grid angle. The

resulting confidence curves are conservative simultaneous confidence bounds in the sense

that at least 100 (1−γ) % of them will contain the true mean curve under repeated sampling

(and under all of the model assumptions). The resulting bounds are approximate (due to

the brute force sampling step), but the approximation error can be made arbitrarily small by
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making N large. The following results used N = 106 which were negligibly different to results

obtained using N = 105. Confidence Bands could also be constructed by instead sampling

coefficients from the simultaneous T 2 ellipse, however, these bands are generally wider than

those resulting from the Bonferroni hypercube for this problem. Confidence bands for the

mean curve of the test population mean curve are found similarly.

To construct confidence bands for the difference in mean shape curves, calculate a Bon-

ferroni confidence region for the vector of differences δs = αs − α∗s and apply the same

process as above (i.e., randomly generating N values of δs uniformly from the Bonferroni

hypercube and converting them to difference curves on a {−80, . . . , 80} angle grid). The

upper and lower confidence bands for the mean shape difference are determined by finding

the maximum and minimum of the N difference curves at each grid angle. Confidence bands

for onionskin problem are presented in Section 5.

3 Gaussian Process Model for Onionskin Curves

In this section, a hierarchical GP model for the onionskin curves is presented. It is assumed

that each observation is generated as a Gaussian process random effect curve plus noise off of

a parent mean curve, which is also modeled as GP. This approach has the advantage of not

having to select a basis representation for the curves as in the previous section. The price

paid is additional computation time, which is discussed further in Section 4. Methods for

comparing the model assuming different shaped mean curves for baseline and test populations

to the model assuming the same shaped mean curves are discussed in Section 3.2.

3.1 The Hierarchical GP Model for Onionskin Curves

Once again, for ease of presentation, the model for the baseline data is presented first; the

model for the test data will be identical. The i’th onionskin observation (in the baseline

data) is represented as
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yi,j = µ(φi,j) + νi(φi,j) + ei,j, i = 1, . . . ,m, j = 1, . . . , ni (5)

where µ is a mean function shared among all m = 9 baseline observations, νi is the ran-

dom effect deviation curve off of the mean curve for the i’th observation, and ei,j is iid

measurement error.

The mean curve µ in (5) is modeled as

µ(φ) = α0 + α(φ), (6)

where

α0 ∼ N(ȧ, τ 20 ), (7)

αs ∼ GP (ḃ, Kτ ), (8)

and GP (a,K) denotes a Gaussian Process with mean function a and covariance function K.

Here and below, all prior parameters that will eventually be specified later in this section

(e.g., ȧ and ḃ above) are denoted with a dot above them. The covariance function Kτ is

Kτ (φ, φ′) =
[
τ 21P1(φ)P1(φ

′) + τ 22P2(φ)P2(φ
′)
]
− τ 23

P4(|φ− φ′|)
4!

, (9)

where Pk is the k’th Bernoulli polynomial, and

τ 2j
ind∼ InvGamma(ċj, ḋj), j = 0, 1, 2, 3. (10)

The covariance function in (9) is the same as that used in Reich, Storlie & Bondell (2009) for

Bayesian smoothing spline (BSS) ANOVA models and also used in Storlie, Michalak, Quinn,

DuBois, Wender & DuBois (2012). The motivation for this form of the covariance comes

from the relation of GP regression to smoothing splines (Wahba 1990). Steinberg & Bursz-

tyn (2004) also demonstrate that this Gaussian process model is equivalent to a Bayesian

trigonometric regression model with independent Gaussian priors for the trigonometric basis

11



functions’ coefficients with variances that decrease as the frequencies of the trigonometric

functions increase.

Figure 4: Conceptual realizations from
the GP “prior”. The curve most qual-
itatively representative of the onionskin
curves among the 50 realizations in the
plot is highlighted in red for illustration.
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Figure 4 provides some conceptual realizations

from the the GP prior for µ. The curves in the fig-

ure were not actually generated from the uncondi-

tional prior used in this study since the diffuse prior

actually used for α0 in (7) and the τj (10) would not

provide the appropriate context. Hence, the curves

in the plot are the result of randomly drawing αs

conditional on fixing α0 and the τj to reasonable

values (i.e., their resulting posterior mean using the

proposed Hierarchical GP model given the data in

Figure 2(d)). Thus, the curves in the figure give an

idea of the type of αs curves that can be produced

from the prior if given feasible values for the hyper prior parameters.

There are three major advantages to using the BSS-ANOVA covariance over the tradi-

tional powered exponential covariance (or similar) in this case, (i) it is much more computa-

tionally stable when domain points (φi,j) are close together as is the case here, (ii) it lends

itself to a much faster MCMC algorithm as discussed further in Appendix A, and (iii) its

support consists of functions αs that are orthogonal in the L2 function sense to constant

functions (i.e., every draw from this αs’s prior and hence posterior is orthogonal to the in-

tercept term α0). The third advantage is important in this case, as mentioned above, since

again it is perfectly acceptable for the baseline α0 to be different from the corresponding pa-

rameter in the test population α∗0, but they must have the same (or very similar) αs curves.

The orthogonal separation of intercept and shape makes the comparison of baseline and test

populations’ shapes straightforward and unambiguous. For example, if αs 6= α∗s, then it is
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certain that baseline and test populations have different shapes. On the other hand, if the

αs were not orthogonal to constant functions, then αs 6= α∗s could possibly mean that the

shapes are actually the same, and the mean curves only differ by an additive constant.

The model used for the random effect curves νi is entirely similar to that for µ, namely

νi(φ) = β0,i + βs,i(φ), (11)

where

β0,i
iid∼ N(0, ς20 ), (12)

βs,i
iid∼ GP (0, Kς), (13)

with Kς defined for ς = [ς1, ς2, ς3]
′ by simply replacing each τj with ςj in (9), and

ς2j
ind∼ InvGamma(ėj, ḟj), j = 0, 1, 2, 3. (14)

Finally, for the measurement error it is assumed that

ei,j
iid∼ N(0, σ2) (15)

σ2 ∼ InvGamma(ġ, ḣ). (16)

To complete the model specification for yi,j prior parameter values ȧ, ḃ, ċj, ḋj, ėj, ḟj,

j = 0, 1, 2, 3, ġ, and ḣ must be specified. In this paper, vague but proper priors are used

for all of the parameters, since there was little previous data or information available about

these onionskin curves. The priors for α0 and αs in (7) and (8), were set with ȧ = 0 and

ḃ ≡ 0, respectively. For the variance parameters τj, j = 0, 1, 2, 3, in (10) the priors were

set with [ċj, ḋj] = [1, 1] for each j. Analogously, the same vague priors were placed on the

parameters related to νi, i.e., [ėj, ḟj] = [1, 1] in (14). Lastly, [ġ, ḣ] = [0.1, 0.1] were set to put

a very vague prior on σ2, since there is actually a lot of information about this parameter

anyhow (e.g., each of the m = 9 baseline observations has ∼ 160 data points that provide
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information about σ2).

An efficient Gibbs sampling algorithm (see Givens & Hoeting (2000), for example) to

obtain an approximation to the posterior distribution of the parameters of the model above

is described in Appendix A. This sampling approach deviates from the standard MCMC

approach for GPs (such as that described in Behseta et al. (2005)) which would discretize

the domain into a grid and sample from a large multivariate normal. In the hierarchi-

cal model proposed here this would be very computationally expensive, since in order to

MCMC sample from the mean curve, it would require conditioning on the current curve

values at all grid points from all m curves for each unit. Instead, we take advantage of the

structure of the covariance in (9), and ultimately sample the coefficients from a truncated

Karhunen-Loéve expansion (Berlinet & Thomas-Agnan (2004), pp.65-70). Thus, the flexi-

ble GP approach described above can be reduced to a simple random effects linear model

for computational purposes, for which a Gibbs sampling scheme can be easily implemented

(Zeger & Karim 1991). For practical purposes, this is in some ways the same as just starting

from an over-parameterized flexible linear model (e.g., spline basis) and treating the coeffi-

cients as random effects, using the covariance of the coefficients to encourage smoothness,

for instance. However, in starting from the GP, the appropriate covariance to give the basis

coefficients is simply dictated by the GP covariance, and this covariance is also diagonal

which increases computational efficiency. More details are provided in Appendix A.

Figure 5 shows the data and the posterior mean for µ+ νi from the GP approach for the

same two baseline curves displayed in Figure 2(d). It is apparent from the plots that the GP

model is general enough to represent the onionskin curves very well.

For completeness, the i’th observation from the test population is represented as

y∗i,j = µ∗(φi,j) + ν∗i (φi,j) + e∗i,j, i = 1, . . . ,m∗, j = 1, . . . , n∗i , (17)
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Figure 5: Two examples of fitting the Hierarchical GP model to the baseline curves. For consistency
with Figure 3 the curves from test 15-2611 and test 15-2550 are presented.
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(b)

with

µ∗(φ) = α∗0 + α∗s(φ), (18)

and all priors for α∗0 and α∗s(φ) iid to those for α0 and αs(φ), respectively.

3.2 Comparing Baseline and Test Populations

As in Section 2.1, a test is described for whether or not the shape of the mean curve for the

baseline population equals that for the test population, i.e., H0 : αs ≡ α∗s vs. HA : αs 6= α∗s.

It is common in Bayesian Statistics to use the Bayes Factor (BF) (Kass & Raftery 1995) to

compare one hypothesis (model) to another,

BF =
p(Y | αs 6= α∗s)

p(Y | αs = α∗s)
(19)

where Y is a set of all of the baseline and test data. If BF > 1, it provides evidence for HA,

and Kass & Raftery (1995) provide some guidelines for the strength of the evidence indicated

by the value of BF . Computing BFs can be challenging when the parameter space is of large

dimension. Kass & Raftery (1995) review several approximations to obtain BF which all
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have some weaknesses, related to either accuracy or numerical instability. Carlin & Chib

(1995) provide a Gibbs sampling algorithm, which samples an indicator for which model

is correct at each MCMC iteration. The Carlin-Chib algorithm makes use of the MCMC

approximated posterior under each model (H0 and HA), and the prior model probabilities

can be adjusted to guarantee good mixing, thus giving a reliable estimate of BF even if it

is very small or large. In Appendix A a Gibbs sampling algorithm for the approximation of

the posterior distribution of the model parameters defined in Section 3.1 is described, and a

straight-forward application of the Carlin-Chib algorithm can then be used to calculate BF .

Even though the Carlin-Chib algorithm alleviates the instability issues with BF calcula-

tion, it is also well known that BFs can be very sensitive to prior specifications (Sinharay &

Stern 2002). This is particularly true in our case (as can be seen in the results of Section 4),

since we were forced to use a vague prior. Because of the vague priors, small differences

between αs and α∗s result in very small values for BF (∼ 10−10). This is because µ and µ∗

can look like just about anything under vague priors. Hence, when they are reasonably close

to each other (even if they are different) the posterior probability favors the model that

treats them as the same.

However, we noticed that though these values for BF were small, they were substantially

larger for test cases where αs 6= α∗s relative to cases where αs ≡ α∗s. This suggested the novel

idea of using BF as a test statistic in a permutation test (Mielke & Berry 2001). That is,

perform the same permutation test as that described in Section 2 only with T 2 replaced by

BF . Because the computation of a BF takes much longer than that for a T 2 statistic, the

sample of all possible combinations in this case is limited to 1000. A log-normal distribution

is then fit to the sample of BFs resulting from each of the combinations c = 1, . . . , 1000, and

finally the permutation p-value is calculated according to

p = 1− Φ((log(BF )− a)/b), (20)
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where Φ is the standard normal CDF and a and b are the mean and standard deviation,

respectively, of the BFs for each combination (BF (c), c = 1, . . . , 1000). This procedure can

be time consuming (more details provided in Section 4), but it is also trivially parallelizable,

which can ease the computational burden substantially.

While this is essentially now a frequentist hypothesis test, it is based on a test statistic

(BF ) that accurately reflects our knowledge of the parameters in a posterior sense. It seems

unfortunate that a lack of substantial a-priori information, should have to drive the type I

error rate (and hence power for subtle differences) to essentially zero (e.g., if using a rule

such as reject H0 if BF > 1). The permutation test, on the other hand is guaranteed to have

type I error rate equal to a pre-specified level. It also happens to have impressive power to

detect differences between αs and α∗s as will be seen in Section 4. In future studies, we will

be able to use the information gained in this study to provide more informative priors, in

which case the BF may be more useful by itself.

If there is evidence to suggest that αs 6= α∗s, then it is helpful to further understand

the nature of difference. To this end, a procedure is described for producing simultaneous

Bayesian credible bands for αs, α
∗
s, and the difference between them δs = α∗s − αs. The

functions (αls, α
u
s ) are (1− γ)100% simultaneous credible bands for αs if

Pr(αls(t) < αs(t) < αus (t), for all t ∈ T | Y) = 1− γ. (21)

where T is the domain of the curves (i.e., T = [−80, 80] in this case).

The MCMC algorithm described in Appendix A provides an approximate posterior sam-

ple of αs(t), α
∗
s(t), and δs(t), for a dense grid t = [t1, . . . , tg]

′. Denote this posterior sample as

[αs,1(t), α
∗
s,1(t), δs,1(t)], . . . , [αs,N(t), α∗s,N(t), δs,N(t)]. Approximate (1−γ)100% simultaneous

confidence bands for αs can then be obtained by finding the largest value of γ′ satisfying

1

N

N∑
n=1

I{ξl,γ′/2 < αs,n(tl) < ξl,1−γ′/2, for each l = 1, . . . , g} < 1− γ (22)
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where ξl,p is the p’th sample quantile of the approximate posterior distribution of αs(tl).

Using the largest value of γ′ satisfying (22) set

αls(tl) = ξl,γ′/2 for l = 1, . . . , g (23)

αus (tl) = ξl,1−γ′/2 for l = 1, . . . , g, (24)

then (αls(t), α
u
s (t)) provide approximate (due to MCMC sampling error, and a finite t grid)

simultaneous credible bands for αs. Simultaneous credible bands for α∗s and δs can be

constructed in the same manner.

4 Simulation Study

Two simulation studies were conducted to compare the B-spline approach to the GP ap-

proach. The hypothesis being tested is that the baseline and test data mean curves have

similar shape. For the B-spline approach, the observed T 2 is compared to the normal theory

critical value and the permutation test critical value. For the GP method, BF is computed

and H0 rejected if BF > 1, and also the BF is compared to the permutation test critical

value. The number of basis functions in the MCMC approximation discussed in Appendix A

was set to N = 50, and the total number of MCMC iterations was fixed at 10,000. In both

studies the baseline mean curve was constructed to be similar to the baseline mean curve

of the data presented above. Figure 6 shows the baseline mean curve and various test data

mean curves for the two scenarios and the resulting power curves.

In both studies the squared “correlation” or R2 between arrival times (i.e., assuming a

uniform distribution on angle) of the test data mean curve to the baseline mean curve varied

from 0.9 to 1.0 (i.e., the null case). In the first study the mean curves were adjusted to differ

at the pole (0.5 in the plot) and also near the minima. In the second study the mean curves

had the same value at the pole and the minima, but differed in-between.
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Figure 6: Representative curves from the simulation studies and power curves shown as a function
of R2. In the legend “N” denotes a power curve based on normal theory; a “P” indicates the power
is based on a permutation test and “BF” is the power from the Bayes factor approach.
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The GP with a permutation test (GP-P) was the most powerful test in both studies.

As would be expected under normality of the βs, the normal theory and permutation test

approaches using B-splines (Splines-N and Splines-P, respectively) give essentially the same

results. The GP-BF approach has almost no power to detect a difference in mean curves

except in study two when the correlation between curves is 0.9. As mentioned previously,

this is an artifact of the vague prior placed on the parameters of the GP model. If more

informative priors are used (e.g., in a future study) the GP-BF method may be more useful.
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In general there is more power to detect differences in mean curves in the second scenario

than in the first. In either case, however, the tests (with the exception of GP-BF) are able

to effectively identify very subtle differences between baseline and test populations.

While the GP-P test was the best performer in terms of power, it was substantially more

time consuming than the other methods to conduct the hypothesis test. The computation

times to compute the hypothesis test for a single realized dataset from the first simulation

for methods Splines-N, Splines-P, GP-BF and GP-P, were ∼0 minutes, 2 minutes, 3 minutes,

and 65 minutes, respectively. However, the reported GP-P time is from a parallel run on a

48-way commodity machine, so that its total CPU time used was actually 3120 minutes.

5 Illustration: Comparing Baseline and New Data

In this section, the baseline population is compared to a population of onionskin tests that

used a different detonator (an LX07 detonator). Because the two sets of onionskin tests used

different detonators, the mean curves are expected to have differences. Confidence bands for

each population mean curve and difference between means are also constructed using the

B-spline and GP approaches.

The p-values from the three tests, Spines-N, Splines-P and GP-P, were all � 0.001, a

strong indication of a mean shape difference between the two populations. Figure 7 shows

the fitted baseline and LX07 curves excluding the intercept (top left plot). The top right

plot shows confidence bands for the difference in mean curves. If the two mean shape curves

were the same, the confidence bands would be expected to contain a horizontal line at zero.

Clearly, the LX07 mean curve is different from the baseline mean curve. The two bottom

plots show confidence bands for the individual mean curves. The spline and GP models

produce confidence bands that are very similar, providing some additional assurance that

the conclusions drawn are accurate.

20



Figure 7: Confidence bands for baseline and LX07 test data. The top left panel shows the fitted
curves (posterior means from the GP method), excluding the intercept. The top right panel shows
95% confidence bands for the difference in mean shape curves. The two bottom panels show 95%
confidence bands for the mean shape curves.
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6 Summary and Conclusions

In this article we have developed and compared two methods for estimating and compar-

ing the shape of two mean curves from possibly different populations based on independent

samples from the populations. Both approaches were then used to analyze two populations

of onionskins. The B-spline method models each sample curve as a linear combination of
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basis functions and then uses the estimated regression coefficients as the basis for hypothesis

testing and construction of simultaneous confidence bands. The second approach models

each sample curve as a more general hierarchical GP, uses the Bayes Factor (by itself and in

a permutation test) for comparing populations, and uses the approximate posterior distribu-

tion obtained via Gibbs sampling to obtain simultaneous credible Bands. Both approaches

produced very similar “confidence” bands for the mean curves and for the difference in means

curves for the onionskin analysis. Empirical evidence from the simulation study suggests that

the novel GP approach based on a permutation test is more powerful for detecting differences

in means curves than the B-spline approach. This increase in power, however, comes at the

expense of much higher computational cost.

While the main focus of this paper has been to compare the shape of mean curves from

possibly different populations it is also possible that interest lies in detecting differences in

variability. For example, we might ask if the variability seen in a sample of observation curves

from a given lot is the same as in baseline observation curves? Using the B-spline approach,

the covariance matrices of the estimated regression coefficients, including the intercept, could

be tested for equality between the baseline and test populations. This test could be easily

combined with the test for difference in mean curves proposed here, if a single test is desired,

using a simple Bonferroni correction. In the GP approach, incorporating a test for difference

in variance parameters of curves across populations into the Bayes Factor could easily be

accomplished by fitting the restricted model assuming the same variance parameters as well

as mean shape parameters.
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A Supplementary Material

A.1 Sampling from the Hierarchical GP Model

The Karhunen-Loéve Theorem (Berlinet & Thomas-Agnan (2004), pp. 65-70) guarantees

that any Gaussian process X(t), t ∈ [a, b] with mean function µ(t) continuous covariance

function K(s, t) can be represented as

X(t) = µ(t) +
∞∑
k=1

Zkψ(t), (25)

where the (i) Zk
ind∼ N(0, λk), (ii) λk and ψk are the eigenvalues and eigenfunctions of K,

respectively, k = 1, 2, . . .. The expression in (25) suggests the approximation

X(t) ≈ µ(t) +
N∑
k=1

Zkψ(t), (26)

for some N . It is not imperative that N be extremely large in practice, since it need only be

large enough to allow enough high frequency eigenfunctions to represent the curve suggested

by the data.

The form of the covariance for the proposed GP model in (9) is additive, i.e., it can be

written as

Kτ (s, t) = τ 21K1(s, t) + τ 22K2(s, t) + τ 23K3(s, t), (27)

with K1(s, t) = P1(s)P1(t), K2(s, t) = P2(s)P2(t), and K3(s, t) = −P4(|s − t|)/4!. Recall

that the mean curve in the hierarchical model in (5) is µ(t) = α0 +αs(t) with α0 ∼ N(ȧ, τ 20 ),

and αs ∼ GP (ḃ, Kτ ), so that

µ(t) = ȧ+ ḃ(t) +X0 +X1(t) +X2(t) +X3(t), (28)

with X0 ∼ N(0, τ 20 ) and Xl(t)
ind∼ GP (0, τ 2l Kl), l = 1, 2, 3.

The first eigenvalue, eigenfunction pair for τ 21K1 are trivially (τ 21 ,P1), with the rest zeros.

The same is true for τ 22K2 with (τ 22 ,P2) and the rest zeros. The number of non-degenerate

eigenpairs for τ 23K3 is not finite, and they do not have a convenient closed form, but they
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can be approximated with a single eigen-decomposition of the matrix K3 resulting from

evaluating K3 on a dense tensor product grid (e.g., of M = 300 equally spaced points)

t = [t1, . . . , tM ]′ on (-80, 80) in our case. The resulting eigen-decomposition (λ̃, Ψ̃) of the

matrix K3, provides an approximation to the eigenvalue, eigenfunction pairs of the K3

covariance function (e.g., see Ramsay & Silverman (2005), pp. 161, 165). That is, the k’th

column of Ψ̃ is an approximation to the k’th eigenfunction ψk of K3 evaluated at each point in

t, while the corresponding k’th element of λ̃ is an approximation to the k’th eigenvalue λk of

K3. Denote these approximations as (λ̃k, ψ̃k), k = 1, . . . ,M . The error of the approximation

for a particular (λk, ψk) decreases as M increases. To evaluate ψk(t) for a point t not in t,

linear interpolation can be used.

Now applying the Karhunen-Loéve approximation in (25) to each Xl in (28) we obtain

µ(t) ≈ ȧ+ ḃ(t) + b0 + b1P1(t) + b2P2(t) +
N∑
k=1

bk+2ψ̃k(t), (29)

with

bk
ind∼


N(0, τ 2k ), k = 0, 1, 2

N(0, τ 23 λ̃k−2), k = 3, . . . , N + 2.
(30)

For practical purposes it is important to have M � N , and in the preceding examples

M = 300 and N = 50. The GP model actually used then is technically that in (29) which

is simply a Bayesian linear model.

Finally, the random effect GP curves νi(t) = β0,i + βs,i(t) from the hierarchical model in

(5) follow the same GP model structure as µ(t) = α0 + αs(t) with variance parameters τ 2l

replaced with ς2l . Pulling the results together, the model for each individual curve from (5)

can be written as

yi,j ≈ ȧ+ ḃ(φi,j) + ci,0 + ci,1P1(φi,j) + ci,2P2(φi,j) +
N∑
k=1

ci,k+2ψ̃k(φi,j) + ei,j, (31)
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for i = 1, . . . ,m, j = 1, . . . , ni, where

ci,k
ind∼


N(bk, ς

2
k), k = 0, 1, 2

N(bk, ς
2
3 λ̃k−2), k = 3, . . . , N + 2.

, (32)

and the bk distributed as in (30). That is, the model for yi,j has now been reduced to a

Bayesian random effects linear model for computational purposes, for which an efficient Gibbs

sampling scheme can be easily implemented (see Zeger & Karim (1991), for example). Full

conditionals for all parameters are closed form conjugate distributions. A major advantage

to this computational scheme over MCMC algorithms used for GP models with traditional

spatial covariance functions, is that a large matrix solve is never required for multivariate

normal sampling or likelihood calculation inside of the MCMC. The only large matrix solve

required for this algorithm is that for the M ×M matrix to obtain the eigen-decomposition

of K3, which is performed just one time prior to the MCMC iterations.
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